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Abstract—Resource performance prediction has become more
and more important in cloud environment as CPU load
prediction is key for system maintenance and application
schedule.This paper presents a multidimensional spatial voting
prediction model to predict real-time CPU load accurately. We
improved the real-time CPU load prediction accuracy by gray
prediction model under the one-dimension prediction; we also
applied voting mechanism to find a more appropriate classifier
prediction model for predicting the CPU load in real time. Our
experiments showed that multidimensional spatial voting
prediction model led to better predictions than classic models.
Our model is not problem-specific, and can be applied to
problems in the fields of other predictions.

Keywords—multidimensional spatial voting, gray prediction
model, CPU load prediction

I. INTRODUCTION

With the development of computer science, Computer has
become an important and indispensable resource just like water,
electricity and gas. During last decade, distributed system has
prevailed around the world. Distributed system is a set of
independent computers which are connected together and work
collaboratively to solve one problem. Resources such as CPU
load, memory load and remaining space of each disks vary
from time to time. The Resource is no longer static but
dynamic but our scheduler uses the ideal static algorithm to
manage tasks according to the information collected may be
several minutes and deems all the resource are still same. In
this circumstance, prediction can be a good solution.

Nowadays, common prediction methods include: multi
factor line regression method, trend forecast, seasonal moving
average, exponential smoothing and so on. Although there are
a lot of prediction methods, not every method can achieve good
results in the field of CPU load forecasting. In the field of CPU
load forecasting, it is difficult to choose a method as CPU load
of different computer exhibits completely different properties.
In this situation, Bates JM and Granger CWJ[1] created the
concept of integrated forecasting in 1969. They[2] combined
different kinds of prediction algorithm to improve universality
of the algorithm, increasing accuracy of prediction by choosing
the most appreciate method in specific situation. However, it's
hard to judge the weight of every single model in integrated
forecasting models. What’s more, the accuracy can even be

lower than classic prediction models in systems which are
random and nonlinear. From another perspective[3], integrated
forecasting are generally one-dimension, which uses only one
kind of historical data. But in the field of CPU load predicting,
CPU load is not relevant to its historical data only[4] , but also
to many other factors such as memory usage, disk IO, network
IO, etc.

II. RELATED WORK

In the past twenty years, predictions on CPU load has been
widespread concerned. Researchers have proposed and
implemented a number of prediction models. However, due to
the complexity and dynamic nature of the environment,
robustness, stability and accuracy of the algorithm should be
improved. According to resources involved in predicting, these
models can be classified into unidimensional prediction and
multidimensional prediction.

A. Unidimensional prediction
The most famous unidimensional prediction is exponential

smoothing(ES)[5]. It was raised by Robert G..Brown), Brown,
believes the trend of the time series with the stability or
regularity, the time sequence can be reasonably postponed
homeopathy; he thinks the recent past trend will continue in the
future in a way.

Peter A. Dinda et al.[6][14] used linear CPU load
prediction models to evaluate 1-30 seconds CPU load based on
five-second CPU average load data. These models include
auto-regressive model (AR), moving average model (MA),
auto-regressive moving average model (ARMA),
autoregressive integrated moving average model (ARIMA) and
a long memory time series based on autoregressive fractionally
integrated moving average model (ARFIMA) and so on. In
these models, AR model is most widely used in CPU load
prediction.

AR model can be applies to dataset within a certain period
of time, and is extremely stable. Peter A. Dinda’s experiments
showed that in some cases, linear model can be used to predict
CPU loads and AR proformed better. AR model was stable
with lower computational complexity, while other models
spent much time. Linear model prolonged the prediction time
to five minutes, but it was still insufficient.



B. Multidimensional prediction
Resource itself is not the only factor to change its status,

impact of other resources also play an important role. So we
can do some deduction by analyzing changes of other resouces.
Status of these resources can be used as a variable of the
prediction algorithm to calculate the prediction value to
achieve the accuracy of the predictions.

M.Swany[21][22] described different kinds of
multidimensional prediction technologies which involved the
interaction between the resource to predict and other factors.
The algorithm designed a series of polynomial fitting to
indicate the relationship and improved the accuracy of
prediction. Although these techniques did not involve CPU
load prediction, their research gave us some inspiration.

Based on previous studies, J.Liang[24] developed a new
model called multi-resource prediction model(MModel). The
model invited not only correlation of historical data of resource,
but also interaction of different resources (such as CPU load
and free memory space). MModel is adaptive, as it can collect
real-time resource status changes over time. Experiment results
showed that the accuracy of MModel, by which prediction
error was reduced by 6% - 90%, was much higher than AR
model.

III. GRAY PREDICTION MODEL

When historical data is periodic and regular, classic model
meets our requirements very well. Even when historical data is
not obviously periodic, Exponential Smoothing model[6] can
do a good job. But problems of historical data such as limited
sample size, little regularity and noise have been revealed in
real-time computer load forecasting. Therefore, it is necessary
to find the key part of historical data and its regularity to
provide an important basis for the next stage. That’s the reason
why gray prediction model[7][8] is under our consideration.

The experiment data showed below comes from some
company servers[9]. The data includes real CPU load and three
related variables(memory usage, disk IO, net IO)[10].
Sampling time is once per minute. The CPU load data reflected
the real situation objectively as it was obvious regular or with
little regularity, sometimes unusual. We applied gray
prediction model to predict the three relevant variables. As raw
data of these variables came from dynamic computer server
system is not regular, firstly we used buffer operator to correct
them so that the value became gentle and fit for gray prediction
model. In this paper, XDm is defined as the data being
corrected by buffer operator, in which m presents the times that
buffer operators worked, and m = 1,2, ..., n. It is derived as
follows:

The raw data is:
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We used 1-AGO to deal with the data series optimized by
buffer operator to get X(1)
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Test the smoothness of the new data series:
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Coefficient a depends on smoothness valueρ.

We differentiated X (1):
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Two parameters of gray prediction model satisfied Least
Squares :

(a,b)T=(BT,B-1BTY)

Among them


















































)0('

)0('
3

)0('
2

)1(

)1(
3

)1(
2

,

1,

1,
1,

nn x

x
x

Y

z

z
z

B


The final one-dimension prediction model is:

ak
iii e

a
bxexxx 











 ))(1( )0('
1

)1(')1('

1

)0('

1

IV. MULTIDIMENSIONAL SPATIAL VOTING PREDICTION MODEL

A. the input and output of the classifiers
To a classifier, input is an eigenvector[11] and output is the

current classification of data. CPU load data is continuous in
the time, but computer is a discrete system. So frequent
sampling leads to discrete data. Theoretically, the range of
CPU load data is 0 to infinity, but it is presented by limited
data points.

Based on these assumptions, first we chose the continuous
CPU load data of length L before the prediction point as the
input eigenvector[12] and the output label as the prediction
value.It was possible that the output label is prediction value as
the amount of CPU load data was limited.

As previously mentioned, CPU load data is related to some
other indicator. We also added the related indicators to
eigenvectors, which included prediction of memory usage, hard
disk IO,network IO.

B. voting prediction model
In general, Ensemble Learning[13] is comprised of two

steps. The first step is model selection which chooses a better
set of algorithms from selected candidate based on a subset of
historical data.The second step is model ensemble which
calculates the final prediction results based on the weighted
candidate sets.

The Ensemble Learning algorithm based on voting derived
from human affairs handling. Agree to vote or not represents



the binary 1 and 0, then ensemble learning overlay and
judgment m akes the weight between 0-1, make a reasonable
decision at last. The CPU load data can be any positive number
(theoretically). Another point to consider is that the error of
classification must be within 100 percent. As CPU load data
can be any value, the MER is can be more than 1.

The first step of the algorithm is using subset of the
historical data to calculate error which is the basis of voting
decision.Only in the case of error being objective, the
Ensemble Learning takes advantages only when error is
objective, or it will enlarge the error. Our model invited cross-
validation to ensure that the error is not too large.

Voting is based on the error. The number of votes obtained
by each algorithm is not integer but decimal, and the sum
votes is 1. The calculation method is as follows:

 set the voting number of the each classifier algorithm to
zero if its error is higher than the average

 the remaining classifier algorithm will take the normalized
reciprocal of its error as its voting weight.

The advantage of voting method is that it don’t vote for
minimum error algorithm arbitrarily. When errors of the
algorithm are close, it is not robust and adaptable to choose
only one, considering in the first step we only made a finite
number of cross-validation, which may not involve all of the
real data. But if we select all the algorithms, it is bound to
make the overall error larger. So the first step is removing the
algorithm with a greater error than average. It can effectively
avoid the impact by algorithm with poor adaptability of the
current data. It is a compromise between accuracy, robustness
and adaptability. We selected error reciprocal[14] to enlarge
the gap between prediction algorithm by weighing the ones
with less error more to improve performance.

For the last step, we used dynamic weight superposition to
calculate the final prediction value.

C. classifier prediction model based on voting process
Step1: Construction of training data

Input: {t1 , t2 , t3 , … , tn，tmemory,tdisk,tnet}

Output :{{input, output }| input={ti , ti+1 , ti+2 , … , ti+L},
output= t L+i+1, i = [0 , L] ,i∈z}

Tn: CPU load on Time T.

tmemory,tdisk,tnet: usage of the memory, disk, net.

Step2: Train the classifier we used.

Ctrained = f(C, input, output );

Ctrained: the classifier that have been trained.

The classifier of classifier prediction model based on voting
includes KNN, J48, SVM, BayesNet.

Step3: Predict by voting. Pseudo-code is as follows:

1. If not running for the first time

2. For each predictor in Candidate Set

3. Calculate the error rate last time

4. End for

5. Update the scores for each predictor

6. If score of current representative predictor < FLOOR
LIMIT

7. Change current representative predictor immediately

8. Else if score of some predictor > THRESHOLD VALUE

9. Set this predictor as the representative predictor

10. End if

11. End if

12. For each predictor in Candidate Set

13. Do prediction and store the result

14. End for

15. Return the result of representative predictor

Step4: The iterative prediction

Since the classifier can predict only one value while quests
are usually multi-step prediction[16], our algorithm creates an
iterative approach. We invited length L data before the
predicted point as the classifier input to get a prediction, and
assumed the result as true to predict the next CPU load until all
the steps had been finished.

V. MULTIDIMENSIONAL SPATIAL VOTING PREDICTION MODEL
SUPPORTED BY GRAY PREDICTION MODEL

Resource performance prediction is becoming more and
more important in cloud environment and CPU load prediction
takes a great part in system maintenance and application
schedule. The traditional method predicts future CPU load by
one dimensional prediction. It works well in certain situations,
such as on periodic servers. But there will be large errors in
real-time prediction inevitably. The main reason is that the
CPU load is not independent and relevant factors should be
taken into account. So we proposed a multidimensional spatial
voting prediction model supported by gray prediction model to
solve this problem.

Forecasting process steps are as follows:

Step 1: Get sample data and divide the sample data into
CPU load data and related factors (including memory usage,
disk IO, network IO).

Step 2: Pre-process every related factor component X, X =
{x1，x2，x3，……，xn}, n represents the length of the sample.
A new data sequence length n is obtain being processed by
buffer operator once, denoted Xm wherein m represents X is
processed data sequence treated by m-order buffer operator.

Step 3: Process each data sequence with 1-AGO to get new
data sequence Ym.

Step 4: Get the evaluation Zm of the neighbors mean value
of the new data sequence Ym.



Step 5: Calculate the differential and derivative through the
formula to get every order of parameters a and b in gray
prediction model, resulting GMm (1,1)[17], wherein m
represents X whose data sequence was processed by m-order
buffer operator.

Step 6: All of the gray prediction models are tested to
measure MER[18] with the test data sample. Take the most
accurate m order gray prediction model with the best MER.
Calculate one dimensional prediction sequence of the three
related factors data by it, denoted Amem, Adisk, Anet.

Step 7: Construct training data set by three one dimensional
predictive sequence and CPU historical load data.

Step 8: The four classifiers are trained to find the most
optimized parameter of the training data set. Calculate the
optimal parameters of individual particles and groups. Select
the optimal parameters to construct four classifiers model.

Step 9: Vote for classifier model. Detailed pseudo code see
(III.C). Choose the most suitable prediction model from the
four classier models based on the voting results.

Step 10: Input the training data to calculate the final
prediction value and iterate as needed.

VI. EXPERIMENTS

The experiment data in this paper comes from some
company servers[9]. Data includes real CPU load(Fig.1) and
three related variables(memory usage, disk IO, net IO)[10].
Sampling time is once per minute. The CPU load data is
obvious regular or with little regularity, sometimes unusual.

Fig. 1.CPU load data.

A. Compared with other algorithms to predict a single step
Three prediction model, including multidimensional spatial

voting prediction model supported by gray prediction model
mentioned in this article, proven ES algorithm and Similarity
Prediction algorithm[19], have been used to do 10 one-step
prediction. Data obtained are shown in Figure I. Errors are
summed up as shown in Table I. We can clearly see though the
table that the error of the multidimensional spatial voting
prediction model is minimal.

TABLE I. ERRORS OF THE THREE ALGORITHMS

Algorithm Name
multidimension
al spatial voting ES Similarity

Prediction

MER 0.5642 2.5476 1.4572
The maximum
prediction error 0.9875 1.4265 1.3542

Mean square
error 0.47341 0.9574 1.7567

TABLE II. PREDICTION SAMPLES

The actual
value

Predictive
value Error Relative

error
Accuracy

/%

multidimensional spatial voting prediction model

20.41 20.51 0.1 0.05 99.5

12.26 11.88 -0.379 0.309 96.91

8.45 8.42 -0.03 0.036 99.64

2.21 1.211 -0.999 4.519 54.81

28.1 28.656 0.556 0.198 98.02

70.58 72.312 1.732 0.245 97.55

27.33 26.483 -0.847 0.331 96.9

2.72 2.156 -0.564 2.072 79.28

10.57 9.885 -0.685 0.648 93.52

48.3 46.348 -1.952 0.404 95.96

ES

33.32 33.41 0.09 0.027 98.5

12.37 12.41 0.04 0.0323 94.5

3.57 3.62 0.05 0.1401 99.6

5.42 2.45 -2.97 5.4797 57.4

42.57 45.72 3.15 0.74 98.2

63.54 68.53 4.99 0.7853 48.5

35.74 38.75 3.01 0.8422 68.7

27.45 27.46 0.01 0.0036 95.4

17.86 15.42 -2.44 1.3662 86

45.72 48.75 3.03 0.6627 88



The actual
value

Predictive
value Error Relative

error
Accuracy

/%

Similarity Prediction

24.21 24.56 0.35 0.1446 97

12.24 12.35 0.11 0.0899 99

8.41 8.82 0.41 0.4875 80

3.32 3.41 0.09 0.2711 88

27.5 27.45 -0.05 0.0182 99.8

70.8 71.42 0.62 0.0876 98

27.1 27.2 0.1 0.0369 99.7

5.4 5.5 0.1 0.1852 97.68

12.54 12.53 -0.01 0.008 99.9

48.7 48.8 0.1 0.0205 99.2

B. Compared with other algorithms to predict multi-step.
According to the previous results of the experiment, we

made a prediction for multi-step by models including
multidimensional spatial voting prediction model supported by
gray prediction model mentioned in this article, proven ES
algorithm, Similarity Prediction algorithm. Step length of
10,20,30,60,180 prediction was done for all data. Averaging
the MER after testing the five sets of the experimental data.
Except calculate MER, we also calculate BEST MER[20] to
represent the best performance that each algorithm ever made.
As the experimental data sampling period was 1 minute,
prediction time were 10 minutes, 20 minutes, half an hour, one
hour and three hours. The object is to test CPU load medium-
term prediction. The following figures show the experimental
results.

TABLE III. BEST-MER

steps multidimensional
spatial voting ES Similarity

Prediction

10 1.4566 2.2345 2.6675

20 1.5789 2.4798 2.4234

30 1.8012 2.9436 2.9417

60 2.3235 3.2124 2.2789

180 2.9458 3.8323 2.335

TABLE IV. ALL MER

steps multidimensional
spatial voting ES Similarity

Prediction

10 2.3456 3.4079 2.2376

20 2.9567 4.234 3.1958

30 3.9104 5.4671 4.4562

60 5.3234 6.2343 6.0356

180 12.457 13.3479 12.5231

The results show that the MER of multidimensional spatial
voting prediction model is better than classic ES algorithm in
all cases. Compared with Similarity Prediction algorithm in
multi-step prediction, the result is very close. The BEST MER
of our model is slightly inferior, but the gap is not great.
According to Table IV, the MER of multidimensional spatial
voting prediction model is basically the best, especially when
the prediction steps is 144, our model is better than all of its
opponent. What’s more, the voting classifier algorithm is better
than any single classifier algorithm when we take adaptability
into consideration. Futhermore, though the results of
multidimensional spatial voting prediction algorithm and
Similarity Prediction algorithm are close, but on single point
our model is superior.

VII. CONCLUSION

We present multidimensional spatial voting prediction
algorithm model to break the limitation of one dimension
prediction algorithm and single classifier prediction model. The
future value of related data set is predicted by gray prediction
model. We also trained all four classifier with the prediction
result of related data set and historical data of CPU load to get
the best parameters of each classifier, which are input for the
prediction to choose the best classifier model by voting.
Compared with classic models, the selected classifier model
shows better suitability in complex real-time system, as the
predicting results are more accurate with less MER and BEST
MER, which means the multidimensional spatial voting
prediction algorithm model we present is effective.
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